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Abstract

This paper demonstrates the e�ciency of using Edgeworth and Gram-

Charlier expansions in the calibration of the Libor Market Model with Stochas-

tic Volatility and Displaced Di�usion (DD-SV-LMM). Our approach brings

together two research areas; �rst, the results regarding the SV-LMM since the

work of Wu and Zhang (2006), especially on the moment generating function,

and second the approximation of density distributions based on Edgeworth

or Gram-Charlier expansions. By exploring the analytical tractability of mo-

ments up to fourth order, we are able to perform an adjustment of the reference

Bachelier model with normal volatilities for skewness and kurtosis, and as a

by-product to derive a smile formula relating the volatility to the moneyness

with interpretable parameters. As a main conclusion, our numerical results

show a 98% reduction in computational time for the DD-SV-LMM calibration

process compared to the classical numerical integration method developed by

Heston (1993).

Keywords: Libor Market Model; Stochastic Volatility; Displaced Di�usion; Swaption

pricing; Model calibration; Edgeworth expansions; Gram-Charlier expansions.

1 Introduction

Our work is motivated by the need in the insurance and banking industry to perform

repeated calibrations of �nancial models. So-called market consistent forecasts are
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notably required for a variety of topics faced by insurance companies, such as the

projection of insurance assets and liabilities, the computation of the Solvency Capital

requirement through Nested Simulations, see Devineau and Loisel (2009) and Bauer

et al. (2012), the implementation of intensive recalibration process within a Least

Squares Monte Carlo framework, see Vedani and Devineau (2013), as well as for

the hedging of Variable Annuities and the computation of trading grids. Among the

�nancial models required, those dedicated to interest rates have reached a signi�cant

complexity within the insurance market practice compared to those dedicated to

other �nancial drivers, such as stocks and in�ation. Our general purpose relates to

the improvement of the calibration procedure of the so-called LIBOR Market Model

with Stochastic Volatility, denoted SV-LMM, which is now widely used as it has

proven its ability to reproduce volatility smile and �t market prices in a satisfactory

way. Additionally, in a very low interest rate regime, the use of a displacement

coe�cient allowing to forecast interest rates in the negative region is becoming a

market standard, leading us to study the Displaced Di�usion SV-LMM, denoted

DD-SV-LMM in what follows. In this context this is crucial to get fast calibration

procedures, especially when the displacement coe�cient itself is included in the

calibration process, as such studies require to perform intensive recalibration of this

coe�cient in order to avoid optimization pitfalls.

Starting from the LIBOR Market Model, Joshi and Rebonato (2003) extended

this framework to both stochastic volatility and displaced di�usion, whereas Wu

and Zhang (2006) proposed a version of the stochastic volatility component which

is now widely used; on this basis they provided several analytical results such as

integral-based formulas for caplets and swaptions. Several other versions of the SV-

LMM have been developed in the literature, whose di�erences mainly lie in the way

of modelling the stochastic volatility component and the scope of instruments to

be addressed; for other versions of the model, we refer to references in Brigo and

Mercurio (2007).

Due to the need for intensive repeated calibration of the model, there is a huge

interest in overcoming the not-so-fast and sometimes unstable existing calibration

procedures. In Wu and Zhang (2006), pricing under the SV-LMM is performed

based on both the classical Heston (1993) numerical integration method and the

famous Fast Fourier Transform (FFT) approach of Carr and Madan (1999), which

has become a standard for option valuation for models with known characteristic

function, as it is particularly the case for a�ne di�usion processes. Although the

FFT method leads to a slight reduction (29%) in computational time compared to

the Heston approach in the speci�c Wu and Zhang (2006) pricing example on a

strike grid (see Table 4), both methods rely on numerical integration in the complex

�eld, which is known to embed some numerical instabilities, as already highlighted
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in Kahl and Jäckel (2005) and Albrecher et al. (2006) on the example of the Heston

model. Additionally, the numerical cost shown by both methods makes repeated

calibration procedures out of reach in a reasonable operational time.

To address this issue and propose a more e�cient calibration method for the

DD-SV-LMM, the aim of this paper is to bring together two research areas; �rst,

the results regarding the SV-LMM since the work of Wu and Zhang (2006), espe-

cially on the moment generating function, and second the use of density distribu-

tion approximation based on Edgeworth and Gram-Charlier expansions. Although

an analytical expression for the moment generating function does not exist for the

SV-LMM in the general setting, for piecewise constant input parameters however

(which are natural in the general practice), recursive closed-forms can be given, see

Wu and Zhang (2006), Proposition 4.1. This is our purpose to take advantage of

this analytical tractability and implement expansions avoiding as much as possible

numerical derivation and integration. This way, we perform the analytical derivation

of moments up to fourth order, based on an analytical di�erentiation of the moment

generating function. This allows us to fully exploit the potential of Edgeworth and

Gram-Charlier expansions, which can be seen as an adjustment of the Bachelier

model for skewness and kurtosis.

In this spirit, several contributions proposed to adjust models as primarily the

Black-Scholes one for non-normal skewness and kurtosis, to overcome the well known

strike price biases embedded in the standard Black-Scholes formula for away-from-

the-money options. Jarrow and Rudd (1982) derived an option pricing formula based

on an Edgeworth expansion of the log-normal distribution, whereas later on, Corrado

and Su (1996) used a Gram-Charlier expansion of the normal density of log-returns in

the same modelling framework. Both papers provided convincing numerical results.

In our setting, we develop expansions based on the reference normal distribution;

this has the advantage of providing an extension of the Bachelier model, which is

our natural reference setting allowing to quote derivative instruments, as caps and

swaptions, in a negative rates context; currently, short term swaption volatilities

can no longer be computed in the alternative log-normal framework proposed by

the Black model. Also, Potters et al. (1998) worked in the framework of Edgeworth

expansions. They used a normal density adjusted for skewness and kurtosis, derived

an analytical approximation of the volatility as a function of the cumulants, then

directly �tted to the observed volatility smile (instead of prices), in an analysis

dedicated to stock derivatives; this contribution is a key source of inspiration for

our present study. More recent references addressed the use and/or analysis of

expansions for �nancial models in di�erent contexts, see e.g. Schlögl (2013), Chateau

(2014) and Heston and Rossi (2016).

By bringing together these two �elds, our approach avoids the complexity and
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robustness issues of numerical integration, while shortening the calibration process in

a signi�cant way. A key step in the analytical tractability is the explicit derivation

of moments up to fourth order which are used thereafter in the Gram-Charlier

and Edgeworth expansions. Under our expansion regime, we moreover derive smile

formulas relating the volatility to the moneyness. In addition to a faster calibration

procedure, this therefore provides additional insights on key features on the volatility

smile based on interpretable parameters. As a main conclusion, our numerical results

show a 98% reduction in computational time in the DD-SV-LMM calibration process

compared to the classical Fast Fourier Transform.

Our paper is structured as follows. In Section 2, we brie�y sketch the swap

rate dynamics underlying the DD-SV-LMM, and then proceed with the study of

the moment generating function. Section 3 establishes the swaption pricing formula

based on Gram-Charlier and Edgeworth expansions, and provides the related smile

formulas. Finally, Section 4 details our numerical results assessing the e�ciency of

the proposed calibration method in comparison to the classical Heston approach.

The paper ends with some concluding remarks.

2 Swap rate distribution under the DD-SV-LMM

In this section, we brie�y sketch the swap rate dynamics under the Libor Market

Model with Stochastic Volatility and Displaced Di�usion, denoted DD-SV-LMM

in what follows. We then present the approximate swap rate dynamics under our

normal volatilities framework and displaced di�usion setting, based on an adaptation

of the freezing technique. Finally, we detail the set of key results on the moment

generating function which will be useful to derive the analytical approximations in

the next Section 3.

Although these derivations are new in this context, we omit the steps of the

reasoning which are analogous to those presented in Wu and Zhang (2006), and we

refer the reader to this paper for more details.

2.1 The DD-SV-LMM framework

Let P (t, T ) be the zero-coupon bond maturing at time T > t with par value 1.

Let us introduce Fj(t), j = 1, ...,M the value at time t of the simply compounded

forward rate for a period [Tj, Tj+1] with length ∆Tj = Tj+1 − Tj. The forward rates

and zero-coupon bond prices are related through

Fj(t) =
1

∆Tj

(
P (t, Tj)

P (t, Tj+1)
− 1

)
.

In a very low interest rate regime, the use of a displacement coe�cient allows

for modelling and forecasting interest rates in the negative region. Let us introduce
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2.2 Swap rate dynamics

the displacement coe�cient δ ≥ 0, also called shift, and the δ-displaced forward rate

Fj(t) + δ. The displacement coe�cient δ accounts for possibly negative forward rate

Fj(t), while allowing for a log-modelling of Fj(t) + δ. Let us introduce the forward

measure Qj+1 associated with the numeraire P (t, Tj+1); under Qj+1, the displaced

forward rate follows the dynamics:

for t ≤ Tj, dFj(t) = (Fj(t) + δ)ζj(t) · dZj+1
t , (1)

where the inner product '·' involves a volatility vector ζj(t) and a multi-dimensional

Brownian motion under Qj+1, denoted Zj+1. In what follows, we denote by m(t) =

inf{j ≥ 1 : t ≤ Tj} the �rst forward rate that has not expired by t. In the model, the

stochastic volatility component is speci�ed as ζj(t) =
√
V (t)γj(t), where γj(t) is a

deterministic vector and V (t) lies in the family of Cox-Ingersoll-Ross processes under

the spot Libor measure Q associated with the numeraire B(t) =
P (t,Tm(t))∏m(t)−1

i=0 P (Ti,Ti+1)

(sometimes assimilated to the risk neutral measure):

dV (t) = κ (θ − V (t)) dt+ ε
√
V (t)dWt, (2)

whose Feller condition 2κθ > ε2 ensures that the process has a stationary distri-

bution and remains strictly positive. From Equation (1), it is possible to derive

the stochastic dynamics of displaced forward rates under the reference risk neutral

measure as, for t ≤ Tj,

dFj(t) = (Fj(t) + δ)
√
V (t)γj(t) ·

(
dZt − σj+1(t)

√
V (t)dt

)
, (3)

with

σj+1(t) = −
j∑

k=m(t)

∆Tk(Fk(t) + δ)

1 + ∆TkFk(t)
γk(t),

where Z is a multi-dimensional Brownian motion under Q, and correlation between

Z and W is speci�ed through

ρj(t)dt = E
[(

γj(t)

‖γj(t)‖
· dZt

)
dWt

]
. (4)

2.2 Swap rate dynamics

Although our study can be adapted to the calibration of the model on caplets without

restriction, we rather consider in this paper the calibration of the DD-SV-LMM on

swaption volatilities, as it allows us to take into account correlations between forward

rates. To do so, we revisit the swaption pricing as proposed in Wu and Zhang (2006),

here adapted to our setting. The swap forward rate at time t for the period from

Tm to Tn writes

Rm,n(t) =
P (t, Tm)− P (t, Tn)

BS(t)
,
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2.2 Swap rate dynamics

where BS(t) =
∑n−1

j=m ∆TjP (t, Tj+1) is the annuity of the swap (which strictly de-

pends on m and n although we omit the notation for simplicity). As a numeraire,

BS(t) de�nes the forward swap measure QS; then the price at time zero of the payer

swaption contract with strike K is given by the following expectation under QS:

PS(0, K) = BS(0)ES [max(Rm,n(Tm)−K, 0)] . (5)

Using weights αj(t) =
∆TjP (t,Tj+1)

BS(t)
, the swap rate can be rewritten as Rm,n(t) =∑n−1

j=m αj(t)Fj(t). To value the swaption, the dynamics under QS can then be derived

as follows (see Wu and Zhang (2006), Eq. 3.3):

dRm,n(t) =
√
V (t)

n−1∑
j=m

∂Rm,n(t)

∂Fj
(Fj(t) + δ)γj(t) · dZS

t ,

dV (t) = κ
(
θ − ξ̃S(t)V (t)

)
dt+ ε

√
V (t)dW S

t ,

with ξ̃S(t) = 1 + ε
κ

∑n−1
j=m αj(t)

∑j
k=m(t)

∆Tk(Fk(t)+δ)ρk(t)‖γk(t)‖
1+∆TkFk(t)

. The di�erential of the

swap rate with respect to Fj is moreover given by

∂Rm,n(t)

∂Fj
= αj(t) +

∆Tj
1 + ∆TjFj(t)

j−1∑
k=m

αk(t) (Fk(t)−Rm,n(t)) .

At this point, one faces the complexity of the dynamics, as in particular the forward

rates are involved in the drift of the stochastic volatility process V . Analogously to

Andersen and Andreasen (2000), we will proceed with the freezing technique which

relies on the assumption of low variability of frozen coe�cients.

Moreover, as we aim to model the swap volatility in a normal framework, we

here adapt the freezing technique by �xing

wj(0) =
∂Rm,n(0)

∂Fj
(Fj(0) + δ),

instead of ∂Rm,n(0)

∂Fj

Fj(0)+δ

Rm,n(0)
as it would be the case in a log-normal framework. This

way, we are able to approximate the swap rate dynamics as follows:

dRm,n(t) =
√
V (t)

n−1∑
j=m

wj(0)γj(t) · dZS
t , 0 ≤ t < Tm,

dV (t) = κ
(
θ − ξ̃S0 (t)V (t)

)
dt+ ε

√
V (t)dW S

t ,

where ξ̃S0 (t) = 1 + ε
κ

∑n−1
j=m αj(0)

∑j
k=m(t)

∆Tk(Fk(0)+δ)ρk(t)‖γk(t)‖
1+∆TkFk(0)

.

In our setting, we develop expansions based on the reference normal distribution;

this has the advantage of providing an extension of the Bachelier model, which is
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2.3 The moment generating function

our natural reference setting allowing to quote derivative instruments in a negative

rates context; currently, short term swaption volatilities can no longer be computed

in the alternative log-normal framework associated to the Black model.

In this slightly adapted framework, it would still be possible to perform swaption

pricing under the well known method developed by Heston (1993) based on numerical

integration involving the characteristic function, see e.g. Equation (2.13) in Wu and

Zhang (2006). However, such approach requires the computation of an integral in

the complex �eld, which is known to embed some possible numerical instabilities,

as already highlighted in Kahl and Jäckel (2005) and Albrecher et al. (2006) on the

example of the Heston model. Additionally, the computational complexity involved

in the numerical scheme makes repeated calibration processes out of reach in a

reasonable operational time.

To address this issue and propose a more e�cient calibration method for the

DD-SV-LMM, we aim at providing analytical approximations of the swap rate den-

sity distribution by means of Edgeworth and Gram-Charlier expansions, leading to

an adjustment of the famous Bachelier formula for skewness and kurtosis. Before

detailing our expansion approach, we recall and adapt in the next subsection useful

results on the moment generating function.

Remark 1. When additionally one is interested into computing prices for an ex-

tended grid of strikes, the problem can be reformulated into computing a collection of

summations to which the famous Fast Fourier Transform (FFT) method by Carr and

Madan (1999) can be applied, see e.g. Equation (5.3) in Wu and Zhang (2006). In

our study, we use as a basis for comparison of the calibration e�ciency the classical

method developed by Heston (1993), as indeed we will consider a limited number of

strikes for out-of-the-money swaptions. As such, benchmarking with the FFT method

is out of scope of the present study, and similar comparison results must hold as the

orders of magnitude of the computation speed of the FFT and the Heston methods

are close, see Table 4 in Wu and Zhang (2006), and given that our 98% reduction

compared to the Heston approach is signi�cant, see Section 4 for more details. Fi-

nally, it is worth mentioning that our pricing method and smile formulas based on

Gram-Charlier and Edgeworth expansions provide analytical approximations which

explicitly depend on the moneyness, therefore avoiding the need for any numerical

integration, and as a consequence any use of the FFT method.

2.3 The moment generating function

We present here the analytical results regarding the moment generating function in

the normal volatilities framework, in which the underlying variable to characterize

is the swap forward rate itself, and in our drifted di�usion setting. Let us denote by
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2.3 The moment generating function

ψ the moment generating function of the state variable Rm,n(Tm), de�ned by

ψ (Rm,n(t), V (t), t; z) = ES
[
ezRm,n(Tm)|Ft

]
, z ∈ R.

Using the fact that the conditional expectation above is a martingale, then applying

Itô's formula and �nally identifying the drift term leads to the so-called Kolmogorov

backward equation

∂ψ

∂t
+ (κθ − κξV )

∂ψ

∂V
+

1

2
ε2V

∂2ψ

∂V 2 + ερλV
∂2ψ

∂V ∂x
+

1

2
λ2V

∂2ψ

∂x2 = 0, (6)

with notations

ξ ≡ ξ̃S0 (t), λ ≡

∥∥∥∥∥
n−1∑
j=m

wj(0)γj(t)

∥∥∥∥∥ and ρ =
1

λ

n−1∑
j=m

wj(0) ‖γj(t)‖ ρj(t),

and terminal condition ψ (x, V, Tm; z) = ezx. Let us remark that this equation

di�ers from the one exhibited in Wu and Zhang (2006) as in the normal volatilities

framework, we directly focus on the underlying process Rm,n instead of ln (Rm,n + δ).

For this reason the term −1
2
λ2V ∂ψ

∂x
which would appear by applying Itô's lemma to

the process ln (Rm,n + δ) vanishes in Equation (6). Adapting Heston (1993) to our

context, one gets a separable form solution, with notation τ = Tm − t,

ψ (x, V, t; z) = eA(τ,z)+B(τ,z)V+zx, (7)

where 
∂A

∂τ
= κθB,

∂B

∂τ
=

1

2
ε2B2 + (ερλz − κξ)B +

1

2
λ2z2,

(8)

with boundary conditions A(0, z) = 0, B(0, z) = 0. Note that the term 1
2
λ2z2

replaces the quantity 1
2
λ2 (z2 − z) which would appear in a log-normal volatilities

framework. From Heston (1993), it is possible to get an analytical closed-form

expression of A and B under the assumption of piece-wise constant functions λ and

ρ on the grid (τj, τj+1], with notation τj = Tm − Tm−j, which is relevant in practice.

The following recursive backward algorithm allows to compute A and B solution to

(8): for each j = 0, ...,m− 1, with convention T0 = 0,{
A(τ, z) = A (τj, z) + Ãj(τ, z) ∀τ ∈ (τj, τj+1],

B(τ, z) = B (τj, z) + B̃j(τ, z) ∀τ ∈ (τj, τj+1],

where Ãj and B̃j are detailed in Appendix 5.1.
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3 Swaption pricing and volatility smile derived from

Gram-Charlier and Edgeworth expansions

We present in this section analytical approximations for swaption prices in the DD-

SV-LMM framework, allowing to extend the standard Bachelier formula to account

for option smiles. The closed-forms rely on Gram-Charlier and Edgeworth expan-

sions at fourth order, which adjust a reference Gaussian distribution by considering

skewness and kurtosis. In a �rst step, we recall some background on Gram-Charlier

and Edgeworth expansions, and discuss their main common features and di�erences.

We then derive analytical approximations for swaption prices based on these expan-

sions, and the closed-form derivation of moments of the swap rate up to fourth

order. Finally, we develop smile formulas relating implied volatilities to the money-

ness level.

3.1 Gram-Charlier and Edgeworth expansions

A Gram-Chalier series expansion (type A) of some density f is de�ned as

f(z) = ϕ(z)
∞∑
n=0

cnHn(z),

where ϕ is the standard normal density, the (cn) are constants related to f , and the

(Hn) are the Hermite polynomials such that H0(z) = 1 and for n ≥ 1,

Hn(z)ϕ(z) = ϕ(n)(z). (9)

Note that for i 6= j, the Hermite polynomials Hi and Hj are orthogonal for the inner

product in L2(R) de�ned as 〈F,G〉 =
∫
R F (z)G(z)ϕ(z)dz, allowing to identify the

coe�cients (cn) which are used in what follows; the proof is left to the reader.

We consider in our study an expansion up to fourth order so as to adjust the

reference density for the skewness and kurtosis of the distribution to be estimated,

analogously to e.g. Corrado and Su (1996) and Necula et al. (2016) where Gram-

Charlier series are used to adjust the Black-Scholes formula for equity option prices.

Starting from a random variable X of interest, with standard deviation ν, we con-

sider the density f of the standardized random variable

Z =
X − E[X]

ν
. (10)

Denoting the third and fourth order moments of Z by µ3 = E[Z3] and µ4 = E[Z4]

respectively, the fourth order Gram-Charlier approximation, which we denote g1,

can be written as

g1(z) = ϕ(z)

{
1− µ3

6
H3(z) +

µ4 − 3

24
H4(z)

}
. (11)
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3.2 Swaption pricing

On the other hand, several papers rather focused on Edgeworth-type expansions,

see e.g. Balieiro Filho and Rosenfeld (2004). Originally, and in most applications,

Edgeworth expansions are used to provide an approximation of a standardized sum

Sn = 1√
n

∑n
j=1 Xj, with (Xj) a sequence of i.i.d. standardized random variables with

third and fourth order moments denoted γ3 = E[X3
1 ] and γ4 = E[X4

1 ] respectively.

According to the central limit theorem, the quantity P(Sn ≤ x) converges towards

the cumulative distribution function Φ(x) =
∫ x
−∞ ϕ(y)dy of the standard normal

distribution. The aim of the Edgeworth expansion is to characterize the distribu-

tion of Sn for large n. The second order Edgeworth expansion is often considered,

which leads to the following approximation using Hermite polynomials introduced

in Equation (9):

P(Sn ≤ x) ≈ Φ(x)− γ3

6
√
n
ϕ(x)H2(x) +

γ4 − 3

24n
ϕ(x)H3(x) +

γ2
3

72n
ϕ(x)H5(x).

Note that the term n doesn't appear in many sudies which aim to derive pricing

formulas. This issue is discussed in Balieiro Filho and Rosenfeld (2004), where the

authors indicate that the term n is incorporated to skewness and kurtosis coe�cients,

and leave these considerations to the reader; we propose to further detail these

aspects in Appendix 5.2.

Let us now provide the approximation based on the single standardized random

variable given in Equation (10) as

P(Z ≤ z) ≈ Φ(z)− µ3

6
ϕ(z)H2(z) +

µ4 − 3

24
ϕ(z)H3(z) +

µ2
3

72
ϕ(z)H5(z).

Finally, after di�erentiation, one recovers an Edgeworth approximated density as

g2(z) = g1(z) + ϕ(z)
µ2

3

72
H6(z), (12)

where the density g1 is the Gram-Charlier density introduced in (11).

3.2 Swaption pricing

The standardized random variable of interest is now

Z =
Rm,n(Tm)−Rm,n(0)

ν
, (13)

with ν the standard deviation of the swap rate Rm,n(Tm). The price of the related

swaption given in (5) now writes

PS(0, K) = BS(0)ES [max(Rm,n(0) + νZ −K, 0)] . (14)

Let us denote indi�erently g the density approximation based on a Gram-Charlier

or an Edgeworth expansion, as considered in (11) and (12) respectively, and still

10



3.2 Swaption pricing

use the notations µ3 and µ4 for the third and fourth order moments of Z. Let us

introduce the standardized moneyness zk = K−Rm,n(0)

ν
; then the swaption price given

in (14) can be approximated by

P̃S(0, K) = BS(0)

∫ ∞
zK

(Rm,n(0) + νz −K) g(z)dz = νBS(0)

∫ ∞
zK

(z − zK) g(z)dz.

(15)

Before stating our main result on swaption pricing below, let us recall that the

famous Bachelier price P̃S0(0, K) can be obtained by considering a standard normal

distribution for Z, leading to

P̃S0(0, K) = νBS(0) {ϕ(zK)− zKΦ(−zK)} , (16)

where we recall that ϕ and Φ respectively denote the standard normal density and

cumulative distribution function.

Proposition 1. The Gram-Charlier swaption price is given by

P̃S1(0, K) = P̃S0(0, K) + νBS(0)ϕ(zK)

{
µ3

6
zK +

µ4 − 3

24
(z2
k − 1)

}
, (17)

and the Edgeworth swaption price writes

P̃S2(0, K) = P̃S1(0, K) + νBS(0)ϕ(zK)
µ2

3

72
(z4
K − 6z2

K + 3). (18)

According to the Newton binomial formula, the third and fourth order moments of the

standardized variable Z de�ned in Equation (13) are given as follows, for k ∈ {3, 4},

µk = ES
[
Zk
]

=
1

νk

k∑
j=0

(
k

j

)
ψ(j)(0) (−Rm,n(0))k−j ,

where ψ(0)(z) ≡ ψ(Rm,n(0), V, 0; z), with V ≡ V (0), is the moment generating func-

tion given in analytical form in Equation (7), whose derivatives are given by

ψ(1) =
(
A(1)
m +B(1)

m V +Rm,n(0)
)
ψ(0),

ψ(2) =
(
A(2)
m +B(2)

m V
)
ψ(0) +

(ψ(1))
2

ψ(0)
,

ψ(3) =
(
A(3)
m +B(3)

m V
)
ψ(0) +

(
A(2)
m +B(2)

m V
)
ψ(1) +

2ψ(2)ψ(1)

ψ(0)
−
(
ψ(1)

)3

(ψ(0))
2 ,

ψ(4) =
(
A(4)
m +B(4)

m V
)
ψ(0) + 2

(
A(3)
m +B(3)

m V
)
ψ(1) +

(
A(2)
m +B(2)

m V
)
ψ(2)

+
2ψ(3)ψ(1)

ψ(0)
+

2
(
ψ(2)

)2

ψ(0)
−

5ψ(2)
(
ψ(1)

)2

(ψ(0))
2 +

2
(
ψ(1)

)4

(ψ(0))
3 ,

(19)

where the computation of the maps Am and Bm and their derivatives is detailed in

Appendix 5.3.
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3.2 Swaption pricing

Equations (17) and (18) present the additional terms allowing to adjust the swap-

tions pricing Bachelier formula by taking into account the skewness and kurtosis of

the swap forward rate distribution. Note that the last term of the right-hand side in

(18) stems from the additional quantity which appears in the Edgeworth expansion

compared to the Gram-Charlier's one, see Equation (12). For both formulas, one

can check that any distribution with same skewness and kurtosis than the normal

distribution are such that µ3 = µ4−3 = 0, which makes the additional terms vanish.

Remark 2. In the case of at-the-money (ATM) swaptions for which K = Rm,n(0),

the standardized moneyness zK is null, so that

P̃S1(0, Rm,n(0)) =
1√
2π
νBS(0)

{
1− µ4 − 3

24

}
,

and

P̃S2(0, Rm,n(0)) =
1√
2π
νBS(0)

{
1− µ4 − 3− µ2

3

24

}
.

This �rst shows that even for ATM swaptions, adjusted swaption prices do not match

the Bachelier valuation. Furthermore, one can notice that in this case the Gram-

Charlier price does not depend on the skewness of the swap rate, whereas the Edge-

worth price does through the quantity µ2
3.

We now state the proof of Proposition 1.

Proof 1. Let us �rst note that according to the property (9) on Hermite polynomials,

one can get 
H1(z) = −z,
H2(z) = z2 − 1,

H3(z) = −z3 + 3z,

H4(z) = z4 − 6z2 + 3.

Now, let us express the Gram-Charlier density (11) into the approximated price

(15), leading to

P̃S1(0, K) = νBS(0)

∫ ∞
zK

(z − zK)ϕ(z)dz − νBS(0)
µ3

6

∫ ∞
zK

(z − zK)ϕ(z)H3(z)dz

+ νBS(0)
µ4 − 3

24

∫ ∞
zK

(z − zK)ϕ(z)H4(z)dz,

where the �rst component reduces to the Bachelier formula (16). As for the others,

it remains to compute quantities of the following form, for j = 3, 4,∫ ∞
zK

(z − zK)ϕ(z)Hj(z)dz =

∫ ∞
zK

zϕ(z)Hj(z)dz − zK
∫ ∞
zK

ϕ(z)Hj(z)dz,

12



3.3 Smile formula

By integration by parts and property on Hermite polynomials, see Equation (9), the

�rst term writes∫ ∞
zK

zϕ(z)Hj(z)dz = −zKHj−1(zK)ϕ(zK)−
∫ ∞
zK

Hj−1(z)ϕ(z)dz.

As for the second term, one gets by the property (9),

zK

∫ ∞
zK

ϕ(z)Hj(z)dz = zK

∫ ∞
zK

ϕ(j)(z)dz = −zKϕ(j−1)(zK) = −zKHj−1(zK)ϕ(zK).

This �nally leads to∫ ∞
zK

(z − zK)ϕ(z)Hj(z)dz = −
∫ ∞
zK

Hj−1(z)ϕ(z)dz = Hj−2(zK)ϕ(zK),

which proves the Gram-Charlier price formula (17). The Edgeworth price formula

(18) can be obtained in a similar way. The derivatives in (19) of the moment

generating function can be derived by standard di�erentiation of (7); this is detailed

in Appendix 5.3.

3.3 Smile formula

In some calibration frameworks, the underlying target function to minimize in order

to estimate the parameters of the DD-SV-LMM is based on volatilities instead of

prices. In such a case, it may be useful to consider a smile function rather than

inverting theoretical prices with a Bachelier formula. We de�ne by smile function a

closed-form expression resulting from the conversion of the Gram-Charlier or Edge-

worth prices into an implied Bachelier volatility. The approach we detail hereafter

to build such a smile function for swaptions instruments is an adaptation of the

method proposed by Bouchaud and Potters (2003) and De Leo et al. (2012) for

stock implied volatilities.

Let us denote by s(ν, zK) the additive correction applied to the volatility ν

in order to recover an implied Bachelier volatility, denoted ν(zK) = ν + s(ν, zK).

Formally, based on the adjusted volatility, the Bachelier price in (16) now writes

BS(0)h (ν + s(ν, zK)) , where the function h is given by

h(x) =

∫ ∞
K−Rm,n(0)

x

(
xz − (K −Rm,n(0))

)
ϕ(z)dz.

The derivative of h at point ν can be computed as h′(ν) = ϕ(zK), which leads to

the �rst order approximation:

h (ν + s(ν, zK)) ≈ h(ν) + s(ν, zK)ϕ(zK). (20)

On the other hand, one can write the Gram-Charlier and Edgeworth prices in Equa-

tions (17) and (18), which leads to the following result.

13



Proposition 2. The Gram-Charlier smile formula is given by

ν1(zK) = ν

{
1 +

µ3

6
zK +

µ4 − 3

24
(z2
k − 1)

}
, (21)

and the Edgeworth smile formula writes

ν2(zK) = ν1(zK) + ν
µ2

3

72
(z4
K − 6z2

K + 3), (22)

where the third and fourth order moments µ3 and µ4 of the swap rate are mentioned

in Proposition 1 and detailed in Appendix 5.3.

Remark 3. In the case of ATM swaptions, K = Rm,n(0), then the standardized

moneyness zK is null, so that the implied volatilities become

ν1(0) = ν

{
1− µ4 − 3

24

}
and ν2(0) = ν

{
1− µ4 − 3− µ2

3

24

}
.

This shows that the volatility of ATM swaptions ν1(0) or ν2(0) do not match the

forward rate volatility ν. Note in addition that the skewness is only involved in the

Edgeworth expansion. These comments are in line with the previous Remark 2 about

ATM prices.

4 Numerical results

This section details the numerical results obtained from the implementation of the

expansion methods of Propositions 1 and 2, and compared to the Heston method

illustrated in Wu and Zhang (2006). We �rst provide an overview of the calibration

setting, including the parametrization of the volatility vector, as well as the market

data used. We then compare the Edgeworth and the Gram-Charlier method, and

�nally compare our approach to the classical Heston method based on numerical

integration.

4.1 Calibration setting

In our calibration framework, we consider a piecewise constant parametrization of

the volatility vector, whose value on the interval [Ti, Ti+1) is speci�ed as γj(Ti) =

βj−i+1g(Tj−Ti) where g(u) = (bu+a)e−cu+d with non-negative constants a, b, c and d,

and where the βk are 2-dimensional vectors with unitary Euclidian norm. As for

the correlation structure between forward rates and volatilities, we consider a con-

stant parameter ρj(t) = ρ, see Equation (4). Note that the displaced coe�cient δ is

included in the calibration process, so that the set of parameters to be estimated is

{a, b, c, d, κ, θ, ε, ρ, δ} where we recall that the parameters κ, θ and ε are involved in

the volatility dynamics, see Equation (2).

14



4.2 Comparison between the Gram-Charlier and the Edgeworth calibration

For the purpose of illustration, the market data used for the calibration of the

DD-SV-LMM are made of an average interest rate structure and swaption volatilities

throughout the year 2016, for both ATM and away-from-the-money swaptions. The

ATM swaptions maturities and tenors considered range into {1, ..., 10, 15, 20, 25, 30}.
For away-from-the-money swaption volatilities, we consider the same range for ma-

turities and focus on a 10-years reference tenor; the strikes (in bps) range into +/-

{25, 50, 100, 150, 200}. In the end, this amounts to consider a set of 350 volatilities

to replicate.

Finally, note that the target function to be minimized for parameter inference is

computed as the sum of squared di�erences between market and theoretical volatil-

ities.

4.2 Comparison between the Gram-Charlier and the Edge-

worth calibration

In this part, we discuss the main di�erences between the Gram-Charlier and the

Edgeworth expansions calibration results. As shown in Propositions 1 and 2, the

Edgeworth expansion leads to an additional term compared to Gram-Charlier in

the analytical approximation, this term being a function of the skewness of the

swap rate distribution. Moreover, for ATM swaptions, the Edgeworth expansion

still accounts for the skewness whereas it vanishes in the Gram-Charlier formulas,

see Remarks 2 and 3. In practice this aspect is illustrated in Figure 1 (resp. Figure

2) by the comparison of ATM (resp. away-from-the-money) empirical volatilities

for the 5-years maturity. Empirical volatilities are obtained through the following

process: in a �rst step, we perform a calibration of the DD-SV-LMM; then, forward

rates are di�used with the calibrated parameters, and we deduce empirical prices

from the Monte Carlo simulations; �nally, by inverting the Bachelier formula, we

extract empirical volatilities. The Edgeworth approach shows a better empirical

�tting accuracy of market data compared to the Gram-Charlier method. On this

basis, we set the Edgeworth approach as the reference one in the next part for the

comparison with the classical Heston method.

4.3 Comparison between the Edgeworth and the Heston meth-

ods

The comparison of our approach with the Heston method illustrated by Wu and

Zhang (2006) is analyzed in the light of three criteria:

(i) In a �rst step, we perform a market consistency analysis assessing the �tting qual-

ity of market swaption volatilities, for both theoretical volatilities (implied by the

pricing formulas) and empirical volatilities (obtained by Monte Carlo simulation).
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4.3 Comparison between the Edgeworth and the Heston methods
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Figure 1: ATM Monte Carlo swaption volatilities for 5-years maturity
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Figure 2: Monte Carlo swaption volatility skews for 5-years maturity

For simulation, a log-Euler scheme is taken with 5000 simulation paths, which re-

�ects an operational standard in the insurance practice, and remains reasonable to

provide satisfying convergence of Monte Carlo scenarios. Furthermore, we discuss

the skew pro�le of theoretical volatilities (implied by the pricing formula).

(ii) In a second step, we assess the accuracy of the Edgeworth expansion by com-

puting theoretical volatilities based on a common set of parameters.

(iii) In a last step, we present the gain in computational time required for calibration

when using Edgeworth expansion, compared to the Heston method detailed in Wu

and Zhang (2006); as a main conclusion, our numerical results show a 98% reduc-

tion in computational time in the DD-SV-LMM calibration process compared to the

classical Heston method.

For all three criteria, we present in this section the results focusing on the 5-years

maturity; the results for 10-years and 20-years maturities are given in Appendix 5.4.

16



4.3 Comparison between the Edgeworth and the Heston methods

4.3.1 Market consistency analysis

The calibration of the DD-SV-LMM is performed on market swaption volatilities for

the three following methods: the Heston method, the Edgeworth expansion applied

to prices (Proposition 1) and to the volatility smile (Proposition 2), respectively

called Edgeworth pricing and Edgeworth smile in the following graphs.

We report in Figure 3 the ATM empirical swaption volatilities for each method

and the corresponding market swaption volatilities for the 5-years maturity. This

highlights that the Heston method and both Edgeworth approaches lead to close

results, providing a satisfactory Monte Carlo �tting of market data.

The theoretical (resp. empirical) volatility skew for the 5-years maturity are

depicted in Figure 4 (resp. Figure 5). It can be seen that the adjustment taken

by the Edgeworth expansion implies similar theoretical volatility skews as for the

Heston method. Moreover theoretical and empirical results lead to close volatility

skews and strongly support the ability of the Edgeworth approaches to reproduce

consistently market quotes.

Note that the closeness between theoretical and empirical volatilities is more

generally discussed in the next section.
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Figure 3: ATM Monte Carlo swaption volatilities for 5-years maturity

4.3.2 Accuracy of approximations under a �xed set of parameters

To assess the accuracy of the approximations underlying each method, we com-

pute for a reference set of parameters theoretical volatilities induced by the Heston

method based on numerical integration, and the Edgeworth pricing and smile for-

mula methods of Propositions 1 and 2. Then we compare these theoretical elements

to Monte Carlo volatilities induced by the reference parameters. We calculate a 95%

con�dence interval centered on empirical volatilities and study occurrences of cases

where theoretical volatilities are outside con�dence intervals.
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4.3 Comparison between the Edgeworth and the Heston methods
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Figure 4: Theoretical swaption volatility skews for 5-years maturity
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Figure 5: Monte Carlo swaption volatility skews for 5-years maturity

For the 5-years maturity, ATM and away-from-the-money theoretical volatilities

for all methods lie in the 95% con�dence interval, see Figures 6 and 7. This ob-

servation supports the robustness of the approximations in both Edgeworth pricing

and smile formulas. Di�erences between theoretical and empirical volatilities �nd

their origin in various reasons. On the one hand, to obtain theoretical volatilities,

approximations are taken (freezing technique, and numerical integration for the He-

ston method, or density approximation for Edgeworth expansion). On the other

hand, empirical values are biased by the sampling error, as assessed by the con-

�dence interval, and by the log-Euler discretization scheme used for Monte Carlo

simulations.

The Edgeworth pricing and smile methods lead to very similar volatility pro�les

both for ATM and away-from-the-money swaptions, as shown in Figure 6 and 7.

Based on such analysis, the impact of the approximations involved in the Edgeworth

expansion can be assessed; this appears to increase with the maturity, as depicted in
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4.3 Comparison between the Edgeworth and the Heston methods

Appendix 5.4 for 10-years and 20-years maturities. Nevertheless, di�erences between

theoretical and Monte Carlo swaption volatilities are small in most cases and strongly

back the underlying approximations of Edgeworth expansions.
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Figure 6: ATM swaption volatilities with given parameters for 5-years maturity
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Figure 7: Swaption volatility skew with given parameters for 5-years maturity

4.3.3 Gain in computational time

Numerical results of this paper have been performed under R 3.2.0, using C++

integration for key functions, in a computer with 2.6 GHz Intel Core i7 CPU. As

for the comparison basis, we use a �xed budget of 2500 target function calls in

the optimization routine to estimate the parameters of the DD-SV-LMM over 350

swaption volatilities, as detailed in Subsection 4.1. We report in Table 1 the CPU

time in seconds needed for the calibration of the DD-SV-LMM, on a common basis of

2500 iterations budget for the optimization routine. The Edgeworth method appears
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4.3 Comparison between the Edgeworth and the Heston methods

much faster as it provides a 98% reduction in computational time compared to the

classical Heston method.

Method CPU Time (seconds)

Heston 425.1

Edgeworth 8.2

Table 1: CPU time required for calibration using a 2500 optimization iterations

budget

This result can be mainly explained by the fact that the Heston method in-

volves numerical integration and requires to work in the complex �eld, whereas the

Edgeworth expansion approach takes advantage of the analytical form of swap rate

moments up to fourth order, without any numerical di�erentiation. Furthermore,

in the Edgeworth case, the derivatives of the moment generating function are only

evaluated for z = 0, leading to simpli�ed calculations.

Finally, note that a calibration consisting in minimizing di�erences between mar-

ket volatilities and those given by the Edgeworth smile formula is even simpler

than the Edgeworth pricing method, as it doesn't require numerical inversion of the

Bachelier formula during the calibration process.

The gain in speed with Edgeworth expansion enables fast recalibrations of the

DD-SV-LMM and can be useful in a variety of topics faced by insurance companies,

such as the computation of the Solvency Capital Requirement through Nested Simu-

lations, see Devineau and Loisel (2009) and Bauer et al. (2012), the implementation

of intensive recalibration process within a Least Squares Monte Carlo framework,

see Vedani and Devineau (2013), as well as for Variable Annuities hedging and the

computation of trading grids. As a matter of fact, the necessity of multiple repeated

calibrations for stress-test scenarios involves a rising need for faster calibration pro-

cesses. For this reason, the Edgeworth pricing and the related smile formula seem

to be particularly e�cient methods in an operational context.

Concluding remarks

In this paper, we illustrated the e�ciency of using Edgeworth and Gram-Charlier

expansions applied to the calibration of the Libor Market Model with Stochastic

Volatility and Displaced Di�usion (DD-SV-LMM). Our approach brings together

two research areas; �rst, the results regarding the SV-LMM since the work of Wu

and Zhang (2006), especially on the moment generating function, and second the

approximation of density distributions based on Edgeworth or Gram-Charlier ex-

pansions. By exploring the analytical tractability of moments up to fourth order,

we are able to perform an adjustment of the reference Bachelier model with normal

20



4.3 Comparison between the Edgeworth and the Heston methods

volatilities for skewness and kurtosis, and as a by-product to derive a smile formula

relating the volatility to the moneyness with interpretable parameters. The numeri-

cal results illustrated in this paper strongly back the approximations involved in the

Edgeworth expansion methods, while providing satisfactory results for the �tting of

market swaption volatilities. As a main conclusion, our numerical results show a

98% reduction in computational time in the DD-SV-LMM calibration process com-

pared to the classical Heston method. It is worth mentioning again that our method

works on the set of real numbers, making it much more simple and stable compared

to the classical Heston approach using numerical integration in the complex �eld.

As for further research, our method can be extended to any (even) order beyond

four, so as to re�ne the �tting accuracy while keeping the advantage of an e�cient

computational approach. This could be achieved by the computation of more an-

alytical derivatives, and a deeper understanding of the de�nition domain of higher

order polynomials.
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5 Appendices

5.1 Solving the moment generating function

Let us consider the separable form of the moment generating function introduced in

in Equation (7): ψ (x, V, t; z) = eA(τ,z)+B(τ,z)V+zx , with τ = Tm − t. Then the �rst

order derivatives of ψ can be computed as

∂ψ

∂t
=

[
−∂A
∂τ
− V ∂B

∂τ

]
ψ,

∂ψ

∂V
= Bψ,

∂ψ

∂x
= zψ,

and second order derivatives as

∂2ψ

∂V 2 = B2ψ,
∂2ψ

∂x2 = z2ψ,
∂2ψ

∂V ∂x
= zBψ.

The Kolmogorov equation in (6) then becomes[
−∂A
∂τ

+ κθB

]
+ V

[
−∂B
∂τ
− κξB +

1

2
ε2B2 + ερλzB +

1

2
λ2z2

]
= 0.

By identi�cation, this leads to the partial di�erential equation in (8).

5.2 On Edgeworth expansions

We consider in this appendix the notations introduced in Section 3. Let us recall

that Edgeworth expansions are used to approximate the cumulative distribution

function of a standardized sum of random variables as

P(Sn ≤ x) ≈ Φ(x)− γ3

6
√
n
ϕ(x)H2(x) +

γ4 − 3

24n
ϕ(x)H3(x) +

γ2
3

72n
ϕ(x)H5(x). (23)

Note that the term n does not appear in papers which aim to derive pricing closed-

form expressions. This issue is discussed in Balieiro Filho and Rosenfeld (2004),

where the authors indicate that the term n is incorporated to skewness and kurtosis

coe�cients, but these considerations are left to the reader. We propose here to

further detail those aspects. Denoting µ3 = E [S3
n] and µ4 = E [S4

n], the skewness

and kurtosis of Sn, one recovers that µ3 = γ3√
n
and µ4 = γ4+3(n−1)

n
. Hence Equation

(23) may be rewritten:

P(Sn ≤ x) ≈ Φ(x)− µ3

6
ϕ(x)H2(x) +

µ4 − 3

24
ϕ(x)H3(x) +

µ2
3

72
ϕ(x)H5(x).

This corresponds for instance to the formula used for Edgeworth Pricing adjustments

in Balieiro Filho and Rosenfeld (2004). In the framework developed in Section 3,

we apply this expansion to the standardized variable Z of the swap rate de�ned

in Equation (13): Z = Rm,n(Tm)−Rm,n(0)

ν
. This random variable is assumed to be

22



5.3 Moments for the swap rate distribution

(�nitely) divisible, that is there exists a (possibly large) integer n and a collection

of i.i.d. random increments (Xj) such that

Z = Sn =
1√
n

n∑
j=1

Xj.

Note that this includes the set of in�nitely divisible distributions, for which the pre-

vious decomposition holds for any n, as well as stable distributions which are special

cases of in�nitely divisible ones. As the calculation of skewness and kurtosis based

on moment generating function focuses directly on the variable Z, consequently

the coe�cients µ3 and µ4 are homogeneous to those considered in our Edgeworth

expansion. For this reason we omit the term n in our Edgeworth framework.

5.3 Moments for the swap rate distribution

Let us denote h(k)(z) = ∂kh
∂zk

(z) for any function h, with h(0)(z) = h(z), and write

A
(0)
j (z) = A (τj, z) ,

B
(0)
j (z) = B (τj, z) .

We recall that, denoting V = V (0) and ψ(0)(z) = ψ (Rm,n(0), V, 0; z), the moment

generating function writes

ψ(0)(z) = eA
(0)
m (z)+B

(0)
m (z)V+zRm,n(0).

Let us de�ne the following functions of z:

a(0) = κξ − ρελz,

d(0) =

√
(a(0))

2 − λ2ε2z2,

gj =
a(0) + d(0) − ε2B(0)

j

a(0) − d(0) − ε2B(0)
j

.

Let us denote u = τj+1 − τ and

h
(0)
1 = a(0) + d(0) − ε2B(0)

j ,

h
(0)
2 = 1− exp

(
d(0)u

)
,

h
(0)
3 = a(0) − d(0) − ε2B(0)

j ,

h
(0)
4 = a(0) − d(0) − ε2B(0)

j −
(
a(0) + d(0) − ε2B(0)

j

)
exp

(
d(0)u

)
= h

(0)
3 + h

(0)
1

(
h

(0)
2 − 1

)
,

h
(0)
5 =

(
a(0) + d(0) − ε2B(0)

j

) (
1− exp

(
d(0)u

)) (
a(0) − d(0) − ε2B(0)

j

)
,

= h
(0)
1 h

(0)
2 h

(0)
3 .
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Functions a, d, gj and (hk) are here implicitly time dependent; the recursive scheme

is given by {
A(0)(τ, z) = A

(0)
j (z) + Ã

(0)
j (τ, z), ∀τ ∈ (τj, τj+1],

B(0)(τ, z) = B
(0)
j (z) + B̃

(0)
j (τ, z), ∀τ ∈ (τj, τj+1],

with

Ã
(0)
j =

κθ

ε2

[(
a(0) + d(0)

)
u− 2 ln

(
1− gj exp

(
d(0)u

)
1− gj

)]
,

=
κθ

ε2

(a(0) + d(0)
)
u− 2 ln

−a(0) − d(0) − ε2B(0)
j −

(
a(0) + d(0) − ε2B(0)

j

)
exp

(
d(0)u

)
2d(0)

 ,
=
κθ

ε2

[(
a(0) + d(0)

)
u− 2 ln

(
− h

(0)
4

2d(0)

)]
,

B̃
(0)
j =

1

ε2

(
a(0) + d(0) − ε2B(0)

j

) (
1− exp

(
d(0)u

))
1− gj exp (d(0)u)

,

=
1

ε2

(
a(0) + d(0) − ε2B(0)

j

) (
1− exp

(
d(0)u

)) (
a(0) − d(0) − ε2B(0)

j

)
(
a(0) − d(0) − ε2B(0)

j

)
−
(
a(0) + d(0) − ε2B(0)

j

)
exp (d(0)u)

,

=
1

ε2
h

(0)
5

h
(0)
4

.

Note that solely the term d(0) =

√
(a(0))

2 − λ2ε2z2 is di�erent to the one consid-

ered in Wu and Zhang (2006). As the state variable is Rm,n(t), this leads to the

additionnal Rm,n(0)z term in the moment generating function.

Order 1 derivative

The �rst derivative of the moment generating function writes

ψ(1) =
(
A(1)
m +B(1)

m V +Rm,n(0)
)
ψ(0),

where the recursive scheme for j = 0, ...,m− 1 is given by{
A(1)(τ, z) = A

(1)
j (z) + Ã

(1)
j (τ, z), ∀τ ∈ (τj, τj+1],

B(1)(τ, z) = B
(1)
j (z) + B̃

(1)
j (τ, z), ∀τ ∈ (τj, τj+1],

Ã
(1)
j =

κθ

ε2

[(
a(1) + d(1)

)
u− 2

(
h

(1)
4

h
(0)
4

− d(1)

d(0)

)]
,

B̃
(1)
j =

1

ε2

h(1)
5

h
(0)
4

− h
(0)
5 h

(1)
4(

h
(0)
4

)2

 ,
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with

a(1) = −ρελ,

d(1) =
a(0)a(1) − λ2ε2z

d(0)
,

and

h
(1)
1 = a(1) + d(1) − ε2B(1)

j ,

h
(1)
2 = −d(1)u exp

(
d(0)u

)
,

h
(1)
3 = a(1) − d(1) − ε2B(1)

j ,

h
(1)
4 = h

(1)
3 + h

(1)
1

(
h

(0)
2 − 1

)
+ h

(0)
1 h

(1)
2 ,

h
(1)
5 = h

(1)
1 h

(0)
2 h

(0)
3 + h

(0)
1 h

(1)
2 h

(0)
3 + h

(0)
1 h

(0)
2 h

(1)
3 .

Order 2 derivative

The second derivative of the moment generating function writes

ψ(2) =
(
A(2)
m +B(2)

m V
)
ψ(0) +

(ψ(1))
2

ψ(0)
,

where the recursive scheme for j = 0, ...,m− 1 is given by{
A(2)(τ, z) = A

(2)
j (z) + Ã

(2)
j (τ, z), ∀τ ∈ (τj, τj+1],

B(2)(τ, z) = B
(2)
j (z) + B̃

(2)
j (τ, z), ∀τ ∈ (τj, τj+1],

Ã
(2)
j =

κθ

ε2

d(2)u− 2

h(2)
4

h
(0)
4

− d(2)

d(0)
−

(
h

(1)
4

)2

(
h

(0)
4

)2 +

(
d(1)
)2

(d(0))
2


 ,

B̃
(2)
j =

1

ε2

h(2)
5

h
(0)
4

− h
(0)
5 h

(2)
4(

h
(0)
4

)2 −
2h

(1)
5 h

(1)
4(

h
(0)
4

)2 +
2h

(0)
5

(
h

(1)
4

)2

(
h

(0)
4

)3

 ,
with

d(2) =

(
a(1)
)2 − λ2ε2 −

(
d(1)
)2

d(0)
,

and since a(2) = 0,

h
(2)
1 = d(2) − ε2B(2)

j ,

h
(2)
2 = −d(2)u exp

(
d(0)u

)
+ d(1)uh

(1)
2 ,

h
(2)
3 = −d(2) − ε2B(2)

j ,

h
(2)
4 = h

(2)
3 + h

(2)
1

(
h

(0)
2 − 1

)
+ h

(0)
1 h

(2)
2 + 2h

(1)
1 h

(1)
2 ,

h
(2)
5 = h

(2)
1 h

(0)
2 h

(0)
3 + h

(0)
1 h

(2)
2 h

(0)
3 + h

(0)
1 h

(0)
2 h

(2)
3 + 2

(
h

(1)
1 h
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2 h
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3 + h

(1)
1 h

(0)
2 h

(1)
3 + h

(0)
1 h

(1)
2 h

(1)
3

)
.
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Order 3 derivative

The third derivative of the moment generating function writes

ψ(3) =
(
A(3)
m +B(3)

m V
)
ψ(0) +

(
A(2)
m +B(2)

m V
)
ψ(1) +

2ψ(2)ψ(1)

ψ(0)
−
(
ψ(1)

)3

(ψ(0))
2 ,

where the recursive scheme for j = 0, ...,m− 1 is given by{
A(3)(τ, z) = A

(3)
j (z) + Ã

(3)
j (τ, z), ∀τ ∈ (τj, τj+1],

B(3)(τ, z) = B
(3)
j (z) + B̃

(3)
j (τ, z), ∀τ ∈ (τj, τj+1],

Ã
(3)
j =

κθ

ε2

d(3)u− 2

h(3)
4

h
(0)
4

− d(3)

d(0)
− 3h

(2)
4 h

(1)
4(

h
(0)
4

)2 +
3d(2)d(1)

(d(0))
2 +

2
(
h

(1)
4

)3

(
h

(0)
4

)3 −
2
(
d(1)
)3

(d(0))
3


 ,

B̃
(3)
j =

1

ε2

h(3)
5

h
(0)
4

− h
(0)
5 h

(3)
4(

h
(0)
4

)2 −
3h

(2)
5 h

(1)
4(

h
(0)
4

)2 −
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(1)
5 h

(2)
4(

h
(0)
4

)2 +
6h

(0)
5 h

(2)
4 h

(1)
4(

h
(0)
4

)3 +
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(1)
5

(
h

(1)
4

)2

(
h

(0)
4

)3

−
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(0)
5

(
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(1)
4

)3

(
h

(0)
4

)4

 ,
with

d(3) =
−3d(2)d(1)

d(0)
,

and

h
(3)
1 = d(3) − ε2B(3)

j ,

h
(3)
2 = −d(3)u exp

(
d(0)u

)
+ 2d(2)uh

(1)
2 + d(1)uh

(2)
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(3)
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Order 4 derivative

The fourth derivative of the moment generating function writes

ψ(4) =
(
A(4)
m +B(4)

m V
)
ψ + 2

(
A(3)
m +B(3)

m V
)
ψ(1) +

(
A(2)
m +B(2)

m V
)
ψ(2)

+
2ψ(3)ψ(1)

ψ(0)
+

2
(
ψ(2)

)2

ψ(0)
−

5ψ(2)
(
ψ(1)

)2

(ψ(0))
2 +

2
(
ψ(1)

)4

(ψ(0))
3 ,
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where the recursive scheme for j = 0, ...,m− 1 is given by{
A(4)(τ, z) = A

(4)
j (z) + Ã

(4)
j (τ, z), ∀τ ∈ (τj, τj+1],
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(4)
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j (τ, z), ∀τ ∈ (τj, τj+1],

Ã
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5.4 Numerical results for maturities 10-years and 20-years

We present in this appendix the numerical results for the comparison between the

Edgeworth and the Heston methods; Figures 8 to 12 focus on the 10-years maturity,

whereas Figures 13 to 17 are dedicated to the 20-years maturity. For each set, the

�rst three �gures relate to the calibration process, whereas the last two �gures depict

the swaption volatilities under a given set of parameters. The reader is referred to

Section 4 for more details.
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Figure 8: ATM Monte Carlo swaption volatilities for 10-years maturity
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Figure 9: Theoretical swaption volatility skews for 10-years maturity
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Figure 10: Monte Carlo swaption volatility skews for 10-years maturity
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Figure 11: ATM swaption volatilities with given parameters for 10-years maturity
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Figure 12: Swaption volatility skews with given parameters for 10-years maturity
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Figure 13: ATM Monte Carlo swaption volatilities for 20-years maturity
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Figure 14: Theoretical swaption volatility skews for 20-years maturity
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Figure 15: Monte Carlo swaption volatility skews for 20-years maturity
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Figure 16: ATM swaption volatilities with given parameters for 20-years maturity
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5.4 Numerical results for maturities 10-years and 20-years
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Figure 17: Swaption volatility skews with given parameters for 20-years maturity
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