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Executive Summary

For European life insurers which have decided to implement Solvency II on an internal model basis
it is necessary to consider two stochastic dimensions: a so called “outer” real-world one to capture
the probability distribution of different outcomes for the economic balance sheet over a one year
time horizon and an “inner” risk neutral one in order to value assets and liabilities along each of
these real world paths. Such a calculation would require a nested stochastic approach, which for
many companies is very difficult or simply impractical due to the number of runs necessary.

This has led companies to look for proxy modelling techniques which can estimate the full approach
in more acceptable run times. Methods used to date include replicating portfolios and curve fitting,
but neither of these techniques is straightforward and when there are complex interactions between
assets and liabilities, there may be difficulty getting an adequate level of fit. Recently a lot of
attention has focused on another technique, Least Square Monte Carlo or LSMC. In the LSMC
method we do not use thousands, but just a small number - such as 10 - of inner valuation scenarios
for each outer one. This gives a very inaccurate valuation, but by carrying out a regression we can
arrive at a very good estimate of the precise calculation we would get from a full nested stochastic
approach.

Via LSMC, we can obtain very accurate results at a fast run time. The accuracy of LSMC results
can be verified in a practically robust and statistically sound way. The LSMC method requires much
less manual intervention than some of the alternatives and can give valuable economic insights
about the interplay of different risk drivers. In this paper we explain the process used to carry out
the LSMC calculation and give a realistic example of its application to a hypothetical German life
insurer.

Introduction

According to the Article 122 of the Solvency II Directive [1], the insurance companies which use
an internal model should calculate their Solvency Capital Requirement (SCR) via a full probability
distribution forecast:

Where practicable, insurance and reinsurance undertakings shall derive the Solvency
Capital Requirement directly from the probability distribution forecast generated by the
internal model of those undertakings, using the Value-at-Risk measure set out in Article
101(3).

The Article 121 of the Solvency II Directive outlines the statistical quality standards which the
calculation of the probability distribution forecast must comply with. In particular, the following
requirements must be taken into account:

• The methods used to calculate the probability distribution forecast shall be based on ade-
quate, applicable and relevant actuarial and statistical techniques and shall be consistent
with the methods used to calculate technical provisions.

• The methods used to calculate the probability distribution forecast shall be based upon cur-
rent and credible information and realistic assumptions.
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• Insurance and reinsurance undertakings shall update the data sets used in the calculation of
the probability distribution forecast at least annually.

In other words, Internal Models are not only expected to produce the probability distribution fore-
cast, but required to produce it in an accurate, robust and auditable way.

In order to produce a probability distribution forecast, one would need thousands of economic
balance sheets after one year. Each of those economic balance sheets would be a result of a
valuation run starting after one year and consisting of thousands of valuation scenarios. Such a
brute force nested simulation approach would solve the problem in principle. To be precise, it would
consist of several thousands of outer real-world scenarios for projecting the company’s assets and
liabilities for one year and at least 1000 inner risk-neutral valuation scenarios at each of these
outer nodes to revalue the assets and liabilities at year one. With the nested simulation approach
being extremely demanding in terms of runtime, one is tempted to look for alternatives - so-called
liability proxy modelling techniques - which deliver a probability distribution forecast within a more
affordable simulation budget. These techniques include Replicating Portfolios [2], Curve Fitting [3]
and Least Squares Monte Carlo (LSMC).

In this note, we show how LSMC yields a powerful tool for liability proxy modelling that can be used
for the probability distribution forecast and displays the following outstanding properties:

• Accuracy of calculations

• Speed of calculations

• Consistent coverage of market, credit and insurance risks

• Robust and reliable validation

• Feasibility of process automation.

Acknowledgement: We express our gratitude to Adam Koursaris and Steven Morrison from Barrie
+ Hibbert Ltd. for a fruitful and rewarding collaboration on various aspects of the LSMC method.

1 LSMC Approach

The LSMC method, which dates back to Longstaff and Schwartz [4], is applied across a range of
different applications from banking to the energy sector. In our paper, we discuss an application
of LSMC to the calculation of the probability distribution forecast as required under Solvency II.
In particular, we consider the task of calculating the probability distribution for the PVFP (Present
Value of Future Profits) of a German life insurance company after one year.

Remark: Needless to say, the LSMC technique can be also applied to other economic balance
sheet items such as the Best Estimate Liability (BEL) as well. Our LSMC application aims at the
PVFP for two reasons. On one hand, the PVFP is of interest in its own right since it is the base
item for MCEV valuations. On the other hand, key Solvency II items such as the SCR but also the
Available Solvency Margin (ASM) can be derived by using the PVFP.

In the following subsections, we subsequently discuss the individual steps of the LSMC approach.
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Step 1 - Identification and Choice of Risk Drivers

The PVFP displays a functional dependence on a very large number of economic (e.g. equity) and
actuarial (e.g. lapse) state variables. In a first step we identify the risks that are relevant for your
portfolio and choose an appropriate set of such economic/insurance state variables - so-called risk
drivers - that explain these risk characteristics of your liabilities. An exemplary list of risk drivers
could include:

• Short term interest rate

• Long term interest rate

• Interest rate volatility

• Equity value

• Equity volatility

• Corporate bond default rate

• Mortality Rate

• Lapse Rate

• Expenses

Step 2 - Expressing the functional relationship between PVF P and
risk drivers

We are going to express the PVFP as a function of its risk drivers. In order to do so we use a
large set of simulated data that contains information on the PVFPs that are obtained at various risk
driver values.

(i) We choose a large number n of possible risk driver values r(j) = (r
(j)
1 , . . . , r

(j)
h ), j = 1, . . . , n,

and assume that our model experiences the performance according to these risk driver val-
ues in the first year (we call each of those risk driver values an outer scenario). Then we
evaluate the liabilities at each of those outer scenarios, but instead of choosing a full set of at
least 1000 risk-neutral valuation scenarios (also called inner scenarios) we use just 10 inner
scenarios emanating from each node. Thus this approach yields rough estimators (yj)j=1,...,n

for the corresponding node PVFPs (see Figure 1.1).

(ii) We perform an ordinary least squares regression through the pairs (r(j), yj)j=1,...,n in order
to express the functional relationship between the risk drivers and the resulting PVFPs. As a
result we get the relationship

f(r) =

k∑

j=1

βjϕj(r), (1.1)

where the ϕj : Rh → R, j = 1 . . . , k form a set of k basis functions, that are able to cover
the complex dynamics PVFP as a function of the risk drivers adequately (see Figure 1.2 for
a one-dimensional example).

Even though each yj would be a rough estimator for the corresponding exact liability value, the
regression generates a refined and more accurate liability value where the single errors in the yj
are being balanced by the defining properties of the least squares estimator for β = (β1, . . . , βk)
(see Figure 1.2 for a one-dimensional example). This leads to a significant reduction of the number
of scenarios and runtime required, as even 20.000 scenarios can lead to very promising results.
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Figure 1.1: Split-up of scenarios in the LSMC approach.

In order to provide for a good quality of the liability function over a broad range we do not only use
a large number of outer scenarios (≥ 5000) as input for the regression but furthermore choose
their starting positions r(j) = (r

(j)
1 , . . . , r

(j)
h ), j = 1, . . . , n, in a way that covers the space of possible

risk driver values evenly instead of using traditional nested stochastic scenarios (differing only by
the small number of inner scenarios employed) where the outer fitting scenarios would be the one
year real world paths (as illustrated in Figure 1.3).

Step 3 - Calculation of Probability Distribution Forecast

Having expressed the functional relationship between the risk drivers as key determinants for the
risk exposure in one year and the resulting PVFP values, we make use of the liability function for
estimating the PVFP distribution in year one.

Therefore, we evaluate the polynomial function by using a set of, say, 100.000 one-year real world
scenarios, i.e. 100.000 realizations of the risk drivers, featuring the desired dependencies between
the relevant risk drivers. Finally we obtain the probability distribution forecast from the evaluation.

Step 4 - Validation of the Results

LSMC allows for explicit and implicit ways to validate the overall fitting process and the quality of
the liability function, and hence the quality of the estimate of the PVFP distribution itself:

1. The most simple and direct way to validate the quality of the fitted function is to compare
its point estimates for certain risk driver values with the corresponding PVFPs for these risk
driver values obtained by a full Monte Carlo simulation with at least 1000 valuation scenarios.

2. We can use 2- and 3-dimensional plots that show the behaviour of the liability function in 1
or 2 risk drivers while all others being kept constant for validating the liability functions by
judging and verifying the behaviour of the function in these risk drivers and their interplay.
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Figure 1.2: One-dimensional illustration of the LSMC approach, that plots the PVFP in dependency
of the equity performance in year one.

Figure 1.3: Two-dimensional example for evenly spread positions of risk drivers for fitting (left) and
their real-world realizations for evaluation purposes (right).
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3. There are simple but powerful statistical methods for LSMC - so-called Jackknife methods -
that can even yield standard deviations and confidence intervals for the point estimates of
the function and resulting values such as estimates of the VaR or Expected Shortfall. They
can easily be calculated without re-running the full stochastic model and can be used to get
a sense for the robustness and stability of the resulting estimates and detect errors in the
overall fitting procedure.

2 LSMC Case Study

In this section we provide a detailed LSMC case study dealing with the LRA, a fictitious German
life insurer, and subsequently applying the steps described above.

The LRA has been writing traditional annuity business since the 1950’s and gradually diversified
its portfolio over the years to include endowment, level-term and unit-linked business.

The balance sheet of the LRA at projection start is a typical one for a German life insurance
company. In particular, its asset mix is as follows: 86% of the assets are invested in government
and corporate bonds, 5% of the assets are invested in equities, 7% are invested in properties and
2% are invested in cash. The total fund accounting value of assets amounts to EUR 11 billions.

The liabilities include EUR 2 billions in unit-linked reserves and EUR 8 billions in conventional
reserves, of which EUR 7.9 billions represent endowment and annuity contracts, whereas EUR 0.1
billions of reserves stem from level term contracts. The policyholder bonus reserve amounts to
EUR 0.9 billions, whereas the statutory value of shareholder equity amounts to EUR 0.1 billions.

2.1 Calculation of Probability Distribution Forecast

We illustrate the LSMC technique by calculating the PVFP distribution of the LRA for year one and
obtaining the company’s SCR.

Step 1 - Identification and Choice of Risk Drivers

Based on the information given above, we identify the following risks as relevant for the LRA:
Interest rate risk, interest rate volatility risk, equity risk, equity volatility risk, credit risk, lapse risk,
mortality risk and longevity risk.

In order to define the market risk drivers, we refer to the corresponding parameters of the capital
market model used: short rate level (serving as an indicator for the short term interest rate level),
mean reversion level (serving as an indicator for the long term interest rate level), equity index level
and equity volatility level. For the credit risk, we proceed analogously and refer to the credit factor
driving the migration probabilities of corporate bonds in the credit risk model of LRA. For insurance
risks, we consider multiplicative factors applicable to the individual insurance risks: lapse factor,
mortality factor and longevity factor. For example, a mortality risk driver value of 0.5 represents
50% of the base mortality table.

Step 2 - Expressing the functional relationship between PVF P and risk drivers

We set ourselves a simulation budget of 50.000 scenarios. We spend this budget by running 5.000
outer real-world scenarios with 10 inner valuation scenarios each. There is a trade-off between the
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Figure 2.1: Year one PVFP distribution of the LRA including VaR and expected shortfall (both for
99, 5% level).

aspiration to fill out the risk driver space as densely as possible and the aspiration to calculate the
PVFP for each outer scenario as precisely as possible. Since the power of LSMC lies in its ability
to fit the liability function across a range of possible future risk driver values, it is important to use
a reasonably high number of outer scenarios.

Step 3 - Calculation of Probability Distribution Forecast

In order to get the PVFP distribution for year one we use outer real-world scenarios with a hori-
zon of one year featuring a simple dependency structure for pragmatic reasons. In particular, we
assume a zero correlation between market/credit risks and insurance risks. Furthermore, we use
QIS5 correlations of insurance risks with one another.

Remark: The LSMC method would allow the risk manager to choose any dependency structure
between the relevant risks, as long as the structure of choice were translated into a suitable pack-
age of, say, 100.000 real-world scenarios.

Evaluating our liability function from Step 2 on these real-world scenarios, we obtain a PVFP
distribution of Figure 2.1. The 99.5% quantile of this distribution equals EUR -294 millions, whereas
the expected shortfall amounts to EUR -366 millions. With the PVFP of LRA (at projection start)
being equal to EUR 115 millions, we conclude that the SCR equals EUR 409 millions.

Step 4 - Validation of the Results

Figure 2.2 displays the results of the point estimates of the liability function and the corresponding
exact values obtained by a full Monte Carlo simulation for a one-dimensional example that varies
the interest rate mean reversion level only, all other risk drivers being constant at their unstressed
levels. The corresponding 95% jackknife confidence level for these point estimators are plotted in
Figure 2.2 as well.

Figure 2.3 contains further one-dimensional examples that illustrate the behavior of the liability
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Figure 2.2: Point estimates from the liability function with corresponding 95% confidence interval
and full nested Monte Carlo values.

function in different single risk drivers, all other risk drivers being constant at their unstressed levels.
Such plots can be used to analyze whether the overall shape of the liability functions displays
plausible dynamics. All plots display an overall decrease of the PVFP when the corresponding
stress levels are increasing, which seems plausible, since an increase of volatilities, longevity
prospects and corporate bond defaults should have a negative effect on the resulting PVFP. A
particularly interesting effect occurs in the behavior of the PVFP in the interest rate volatility, where
the PVFP at a very low level of volatility increases slightly with increasing volatility (and drops at
higher volatility levels). We consider this behavior to be plausible by considering the fact, that -
given a very low volatility and today’s low interest rates - a moderate upward movement of the
interest rate volatility level will lead to a rising PVFP since in such an economic environment higher
volatilities will represent a prospect of improvement.

With the liability function at our disposal, we can analyze the interplay of different risks. We con-
strain ourselves to pairs of risk drivers since, say, a combination of 5 risk drivers would be neither
easy to plot nor easy to grasp. Firstly, we plot the PVFP as function of the interest rate mean
reversion level and the (historic) lapse. The lapse range covers stresses from +50% to -50% and
the mean reversion level stresses range from +4.5σ to -4.5σ, with σ being the standard deviation
of the interest rate mean reversion process.

This surface (see Figure 2.4) can be explained via the following considerations:

• If both the interest rate mean-reversion level and the lapse rates are low, then the PVFP is
extremely low, since the interest rate guarantees persist and the capital gains do not suffice.

• If the interest rate mean-reversion level is low, then rising lapse rates help reduce the guar-
antees and thus signify a rising PVFP.
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Figure 2.3: One-dimensional plots of the liability function that show the behavior of the PVFP in
single risk drives: Equity volatility (top left), interest rate volatility (bottom left), corporate
bond default level (top right) and longevity stress level (bottom right).

• At high lapse rates, a rise of the interest rate mean-reversion level leads to a significant PVFP
increase due to rising capital gains and falling cost of guarantees.

• At a high interest rate mean-reversion level, decreasing lapse rates signify an increase of
assets under management and thus lead to a rise of PVFP.

Summary: All three validation criteria - comparison of estimated PVFP against true Monte Carlo
values, analysis of PVFP dynamics in 1 and 2 risk dimensions and calculation of confidence in-
tervals for the liability function - indicate that LSMC produces results of high quality. The liability
function can be accurately computed and gives no indications for errors in the fitting process. Thus,
risk measures such as VaR or Expected Shortfall obtained via this method are reliable for risk man-
agement purposes. Furthermore, the liability function allows for an economically sound analysis of
the impact of various risk drivers upon the results.

2.2 Refined Approach: PVFP Dependency on Management Rules

Using LSMC, we can not only analyze how the PVFP or the SCR depends on its risk drivers, but
also explore the dependency of the PVFP or the SCR on the (parameters of) the management
rules. In our example, we consider the equity backing ratio (EBR). At LRA, the EBR management
rule is very simple - in fact, it keeps the EBR constant over all the projection years and scenarios.
In other words, the only degree of freedom available is the EBR parameter.

We extend our list of risk drivers in order to cover the EBR parameter, so that this parameter is



Milliman Solvency II Proxy Modelling via Least Squares Monte Carlo 11

Figure 2.4: Two-dimensional risk dependency surface.

Figure 2.5: Year one PVFP distribution of the LRA for different equity backing ratios.
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included in the outer scenarios and the regression and thus appears as an additional argument of
the liability function. If we evaluate the function we can set this parameter to its base value while
simulating the other risk drivers with their joint real world realisations as stated above. This leads
to the distribution we discussed above. However, we can also use the information from the fitting
across a range of different EBR values and change the value of the EBR parameter to another
valid value. The result is again the full distribution of the PVFP - derived under the assumption of
a different management rule parameter.

With the EBR = 5% in our previous example, we assume that the LRA management could set this
parameter anywhere between 1% and 9%. Using LSMC, we obtain the following results:

Equity Backing Ratio 99, 5% VaR SCR

1% -143 258
3% -222 337
5% -294 409
7% -391 506
9% -482 597

Table 2.1: Distribution of PVFP (in millions) for different EBRs

These results can be explained in the following way: If a relatively high constant EBR is used, then
it poses a substantial strain upon the shareholder in burn-through scenarios, whereas about 90%
of the capital gains in good scenarios are allocated to policyholders.

The densities for each individual choice of the EBR parameter are visualized in Figure 2.5.

3 Comparison with other methods

We have seen that LSMC offers a powerful framework for calculating the probability distribution
forecast in a very accurate and flexible way. In this section we summarize the outstanding features
and benefits of the LSMC approach and compare it to Replicating Portfolios (RP) and Curve Fitting
(CF):

• Speed: We found that an affordable simulation budget of 50.000 scenarios leads to LSMC
results of high quality. The fitting can be carried out in less than 1 hour, the evaluation of the
liability function only takes few minutes and the validation can be performed in less than 1
hour.

• Simple choice of outer fitting scenarios: Both RP and CF can only be calibrated against
a rather small number of fitting scenarios. Hence choosing those scenarios involves expert
judgement and can be quite cumbersome. In a contrast to this, LSMC does not require expert
judgement, but thousands of fitting scenarios that are just evenly spread over the possible
range of risk driver values in order to equip the liability function with as much information as
possible.

• Validation: LSMC allows for the calculation of explicit confidence intervals of the liability func-
tion and the resulting capital requirements such as VaR and expected shortfall. Thus one can
hence give a quantitatively precise answer to the question “How good is the overall quality of
the VaR/expected shortfall estimate?”

• Accuracy: Using the least squares regression technique to cancel out the sampling errors
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in the individual point estimates enables us to use a large quantity of outer fitting scenarios
(>= 5000) while RP and CF are both calibrated against only few outer fitting scenarios. The
LSMC approach thus provides a lot more information on the dynamics and dependencies of
the PVFP as a function of the risk drivers than RP and CF. This leads to a more thorough
interpolation between those outer scenarios which is truly based on sampled data and does
not involve "guessing" on how to interpolate between the sparse populated values of the
outer scenarios.

• Mathematical foundation: There is a fundamental mathematical framework for LSMC that
assures its theoretical convergence whereas both RP and CF have no such background
since their quality depends heavily on the right choice of outer scenarios and assets/functions
involved in the calibration/fitting process.

• Flexibility: Non-market risks and parameters of the management rules can be included in
a canonical way. On the contrary, RP cannot necessarily deal with insurance risks such as
lapse risk or mortality risk or even parameters of the management rules, since there are no
liquid capital market instruments driven by the latter. Curve fitting will be theoretically able to
deal with those kinds of risk drivers. However, due to the extremely small number of outer
fitting scenarios it is more sensitive to the overall number of risk drivers and its quality will
drop significantly in each additional risk driver being included in the model. In comparison,
LSMC yields stable and robust results even for a large number of risk drivers and can deal
with extension of the risk driver space with a relatively small additional amount of complexity
in the liability function (this fact has already been reported by Longstaff and Schwartz).

• Automation: The overall LSMC process can be automated to a very high extent. All steps
that are performed outside ALM-software (generating the outer fitting scenarios, fitting the
liability function, calculating the probability distribution forecast and validation of the result)
can be fully automated and need no expert judgement and human intervention.

• Fees: LSMC does not incur any significant software licence fees whereas RP one requires
special software in order to construct replicating portfolios of high quality, which does incur
significant licence fees.

• Economic Insights: By evaluating the liability function the interplay between different risk
types can be analyzed and interpreted economically as described in Step 4. Such visualiza-
tions provide powerful tools to gain additional insight on the dynamics of the PVFP.

4 Outlook

The LSMC methodology is a powerful framework which can be used for a wide range of appli-
cations. We have shown how LSMC can be applied for the calculation of probability distribution
forecasts over the 1-year-horizon, as required under Solvency II. We have seen in our case study
that LSMC solves this task reliably and produces a number of additional insights which can be
used for risk management purposes.

We would like to conclude this white paper by listing a number of related Solvency II applications
of LSMC which we consider especially relevant in our work:

• Intra-year updates of the Solvency II calculation results,

• Medium-term economic capital planning over a 3-5y horizon,

• Group aggregation of SCR across life, health and non-life businesses,

• Development of management rules based on Solvency II coverage ratios.
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We believe that especially the latter application is of fundamental interest. With Solvency II set to
significantly influence business decisions for years to come, management rules must be able to
take Solvency II into account, if they are to pass the Use Test.
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